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Abstract

This paper shows that a numerical modelling method in which constraints are replaced with positive and negative

penalty functions, which may be regarded as artificial elastic restraints of positive and negative stiffness, may be safely

used to determine the critical speed associated with aeroelastic divergence. The critical speeds of a beam with restraints

of positive and negative stiffness are found to converge to that of the constrained system, from below if the stiffness is

positive and from above otherwise. A uniform Euler–Bernoulli beam clamped at the rear end is analysed using an

artificial restraint to enforce the constraint of zero rotation at the clamp, and the results are compared with the exact

critical speed of the constrained system obtained analytically. The paper shows that, contrary to common belief that the

penalty parameter must be positive, the inclusion of a negative penalty parameter enables the determination of errors

due to violation of the constraints.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Aeroelastic divergence of lifting surfaces is a phenomenon in which the structure loses its stiffness due to destabilising

aerodynamic forces. Except in some simple cases, exact analytical determination of critical speeds is not possible and

the solution is commonly obtained by using numerical procedures such as the finite element method (Satt, 1992). In

applying numerical methods, essential support and continuity conditions are often imposed approximately using the

penalty function method. The main disadvantage of this method is the difficulty in choosing a suitable value for the

penalty parameter which must be large enough to minimise any violation of the constraint condition, but must be small

enough to avoid numerical problems such as ill-conditioning (Courant, 1943; Zienkiewicz, 1977). A penalty value is

often chosen empirically or by trial and error until numerical convergence is observed.

The origin of the penalty method may be traced to the work by Courant (1943) in which he introduced the use of

elastic restraints with high stiffness to represent rigid constraints thus relaxing the admissibility requirements. This

method is now widely used in structural applications (Amabili and Garziera, 1999, 2000; Cheng and Nicolas, 1992;

Courant, 1943; Gorman, 1989; Yuan and Dickinson, 1992). The same approach has also been adopted in the finite
e front matter r 2007 Elsevier Ltd. All rights reserved.
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element method and other numerical procedures through the concept of penalty functions, in which quadratic

error functions are multiplied by large penalty terms and included in the minimization equations to reduce the error

due to violation of any constraints (Gavete et al., 2000; Pannachet and Askes, 2000; Zienkiewicz, 1977). Until recently

the magnitude of the stiffness of the artificial restraint or the penalty parameter was selected either empirically or

through a trial and error procedure until numerical convergence was observed, and the method did not provide any

information on the maximum possible error due to violation of the constraints. However, recent publications show that

by using a combination of positive and negative stiffness values (or penalty values), it is possible to delimit the natural

frequencies and critical loads of structures (Ilanko, 2002a, 2003; Ilanko and Dickinson, 1999). Some numerical results

show that bounding and converging values for the deflection of a constrained structure may be obtained from

asymptotic models with positive and negative penalty functions (Ilanko, 2002b) and a proof of convergence for this case

has recently been published (Ilanko, 2005). Similar findings have also been confirmed for a simple boundary value

problem using a meshless discretisation method (Askes and Pannachet, 2005) and in the solution of a heat transfer

problem (Ilanko and Tucker, 2005). More recently it has been shown that plotting the variation of a required parameter

against the inverse of penalty parameters is more informative and useful (Askes and Ilanko, 2006; Williams and Ilanko,

2006).

The purpose of this note is to show that such an asymptotic modelling method with positive and negative penalty

terms also works well in the determination of critical speed associated with aeroelastic divergence. An analytical

formulation for the aerodynamic force acting on a low aspect ratio wing bending in the chordwise direction, based on

the linearised supersonic wing theory was presented by Bisplinghoff et al. (1955). Based on this theory, the divergence

analysis of a lifting surface, namely a cantilever beam, has been carried out using Galerkin’s method with displacement

functions, which individually violate the zero slope condition. The zero slope condition has then been enforced

approximately by applying a penalty against the violation of this constraint, using large positive and negative penalty

parameters. The results compare well with exact results (Satt, 1992).
2. System description

Consider the system shown in Fig. 1, a uniform beam of length L, flexural rigidity EI clamped at the rear end (with

respect to the direction of flight) as an illustrative example. The beam is subject to an aerodynamic force of intensity

(local lift per unit length)

f ¼ f 0
du

dx
, (1)

where f0 is the lift slope per unit length and is given by

f 0 ¼
4M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

r1a21b

2
. (2)

Here, rN is the density of air, aN is the speed of sound, b is the width of the beam, du/dx is the local slope of

the transverse displacement u and M is the Mach number given by the ratio of airspeed to the speed of sound

aN(M ¼ v/aN).

The governing equation for the system is

EI
qu4

qx4
� f 0

qu

qx
¼ 0. (3)

The exact solution to the problem is available and will be used for verifying the accuracy of the numerical procedure.

Since the purpose of this note is to show the applicability of the negative penalty method, one of the constraints will be

replaced with an elastic restraint. Relaxing the zero slope condition at the clamp and introducing an artificial rotational

elastic restraint with a stiffness ky at the rear end of the beam (at x ¼ 0), the model in Fig. 2 is derived. The only

geometric boundary condition for this system is that the translation at the support is zero, u (0) ¼ 0.
Flight direction 

Fig. 1. Constrained system (clamped beam).
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Flight direction 

L

Fig. 2. Approximate model.
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3. Solution by the Galerkin method

The displacement u may be expressed as a series of admissible functions:

u ¼
Xn

i¼1

cifiðxÞ, (4)

where the functions must satisfy the constraint condition

fið0Þ ¼ 0. (5)

Eq. (3), the governing differential equation for the system in Fig. 1, also governs the model in Fig. 2. Substituting Eq.

(4) into Eq. (3) gives

EI
Xn

i¼1

cif0000i � f 0
Xn

i¼1

cif0i ¼ 0. (6)

The Galerkin method formulation leads to n number of equations of which the jth equation isZ L

x¼0

EIfj

Xn

i¼1

cif
0000
i � f 0fj

Xn

i¼1

cif
0
i

 !
dx ¼ 0. (7)

The first integral may be transformed into a weak form by integration by parts giving

Z L

x¼0

EIfj

Xn

i¼1

cif
0000
i dx ¼

Z L

x¼0

EI
Xn

i¼1

cif
00
i f
00
j dxþ EI

Xn

i

cifjf
000
i

�����
L

0

� EI
Xn

i

cif
0
jf
00
i

�����
L

0

. (8)

For the approximate model, all boundary values vanish except EI
Pn

i cif
0
jf
00
i

���
0
. This term represents the energy stored in

the artificial rotational restraint. Since EI
Pn

i cif
00
i

��
0
represents the moment at x ¼ 0, we can write EI

Pn
i cif

00
i

��
0
¼Pn

i kycif
0
ið0Þ.

Therefore, the weak form of the equation isZ L

x¼0

EI
Xn

i¼1

cif
00
i f
00
j � f 0fj

Xn

i¼1

cif
0
i

 !
dxþ

Xn

i¼1

kycif
0
ið0Þf

0
jð0Þ ¼ 0. (9)

This may be written in matrix form as

½G�fcg � f 0½F �fcg ¼ f0g, (10)

where

Gi;j ¼

Z L

x¼0

EIf00i f
00
j dxþ kyf

0
ið0Þf

0
jð0Þ and Fi;j ¼

Z L

x¼0

fjf
0
i dx. (10a,b)

The shape functions are taken as simple polynomials of the form

fi ¼ xi. (11)

This yields the following expressions for the matrix elements:

Gi;j ¼ ky if i ¼ j ¼ 1,

Gi;j ¼ 0 if i ¼ 1 or j ¼ 1 but iaj,
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Gi;j ¼
EIiði � 1Þjðj � 1ÞLðiþj�3Þ

ði þ j � 3Þ
if ia1 and ja1 (12)

and

Fi;j ¼
iLðiþjÞ

ði þ jÞ
. (13)

Pre-multiplying Eq. (10) by [G]�1 leads to the eigenvalue problem

½G��1½F �fcg ¼ 1=f 0½I �fcg. (14)

For a non-trivial solution, 1/f0 must be an eigenvalue of [G]�1[F]. The lowest critical velocity is related to the largest

eigenvalue l. Results of the largest eigenvalue as a function of ky is given in Fig. 3 for the following data: L ¼ 0.12m,

EI ¼ 3.77Nm2, rN ¼ 1.225 kg/m3, aN ¼ 340.3m/s, b ¼ 0.01m.
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Fig. 3. Variation of the critical speed with stiffness of the restraint: ??, constrained system; , asymptotic model.
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Fig. 4. Variation of the critical speed with inverse stiffness: ??, constrained system; , asymptotic model.
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Table 1

Numerical results

ky (Nm/rad) lmax (m/N) vcr (m/s)

109 0.000072413 1619.4

108 0.000072413 1619.4

107 0.000072414 1619.4

106 0.000072420 1619.2

105 0.000072482 1617.8

104 0.000073096 1603.5

103 0.000079272 1472.1

102 0.000142536 749.8

�102 0.000017567 6819.1

�103 0.000065629 1794.4

�104 0.000071731 1635.5

�105 0.000072345 1621.0

�106 0.000072407 1619.5

�107 0.000072413 1619.4

�108 0.000072413 1619.4

�109 0.000072413 1619.4

7N (constrained) 0.000072413 1619.4
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The critical velocity in terms of the highest eigenvalue lmax is

vcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�21 Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�41 � 16l2maxr21b2

q� �
8l2maxr21b2

vuuut
. (15)

The above equation gives two possible solutions due to the plus or minus term in the numerator. However, using the minus

sign gives a result very close to the speed of sound where Eq. (2) is not applicable. Therefore, only the solution associated

with the plus sign is used. The results for the critical velocity for various values of positive and negative stiffness are presented

graphically in Fig. 4. Some numerical results are given in Table 1. Six terms were (n ¼ 6) found to be sufficient to obtain the

eigenvalues presented here but convergence was checked by taking more terms up to n ¼ 10, and computing the results to

nine decimal places. The critical speed for the cantilever beam calculated for the same data using the exact method described

in Satt, (1992) is 1619.4m/s. The results for positive and negative values of stiffness bound the exact results for the fully

constrained system. Interestingly, plotting the critical speed against the inverse stiffness parameter results in a near-straight

line for moderately large stiffness terms, in line with a similar phenomenon observed in the solution of other constrained

variational problems (Askes and Ilanko, 2006; Williams and Ilanko, 2006). Fig. 4 shows such a plot for ky45000Nm/rad.

It should be stated here that the use of positive and negative penalty parameters helps to calculate and control the

maximum possible error due to violation of the constraints only. While this removes some limitations on the choice of

admissible functions, which may improve the accuracy of the overall solution, the actual error due to Galerkin’s

approximation cannot be estimated using this method.
4. Concluding remarks

The critical speed of air due to aerodynamic forces acting on a beam partially restrained by an artificial elastic

restraint was determined using the Galerkin method. The critical speed thus calculated approaches that the fully

constrained beam as the magnitude of the stiffness becomes very large but its direction of approach depends on the sign

of the stiffness parameter used. This shows that any error in the calculation of critical speeds due to approximation of

constraints with artificial restraints or penalty parameters can be determined and controlled.
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